

КОНТРОЛЛЕРЫ ЛОГИЧЕСКИЕ ПРОГРАММИРУЕМЫЕ OPTILOGIC L

Модуль аналогового вывода АО-4

РОССИЯ, 305000, Г. КУРСК, УЛ. ЛУНАЧАРСКОГО, 8 WWW.KEAZ.RU

Содержание

1 Описание и работа	3
2 Использование по назначению	9
3 Техническое обслуживание	11
4 Текущий ремонт	11
5 Хранение	11
6 Транспортирование	11
7 Утилизация	11
Приложение А Карта регистров Modbus модуля AO-4А	12

Настоящее руководство по эксплуатации содержит информацию, необходимую для правильной и безопасной эксплуатации модуля аналогового вывода АО-4 (далее – модуль), входящего в состав линейки контроллеров логических программируемых серии OptiLogicL (далее - ПЛК).

Основная область применения ПЛК – автоматизация технологических процессов на объектах различных отраслей промышленности, а также инженерных систем зданий и сооружений.

ПЛК соответствует ГОСТ IEC 61131-2-2012.

ПЛК предназначены для использования вне взрывоопасной зоны. Связь с электрооборудованием, расположенным во взрывоопасной зоне, осуществляется по требованиям на взрывозащиту конкретных видов, согласно комплекту государственных стандартов на взрывозащищенное оборудование.

К работе с изделием допускаются лица, изучившие настоящее руководство и имеющие квалификационную группу по электробезопасности не ниже 3.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение

Модуль АО-4 предназначен для использования в системах автоматизированного управления технологическим оборудованием в энергетике, на транспорте, в различных областях промышленности, жилищно-коммунального и сельского хозяйства.

Модуль содержит 4 аналоговых выхода и может быть использован как модуль расширения для модулей процессорных CPU-1,2,3, или как автономное устройство аналогового вывода с протоколом передачи Modbus RTU при подключении через модуль расширения BE-1.

Модуль предназначен для непрерывного необслуживаемого режима работы.

1.2 Технические характеристики

1.2.1 Конструкция, обозначение, размеры и масса модуля.

Внешний вид и размеры модуля показан на рисунке 1.

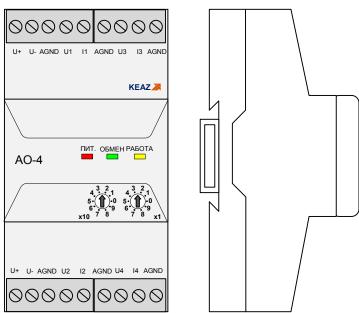


Рисунок 1 – Внешний вид и размеры модуля

Модуль выполнен в пластиковом корпусе, предназначенном для установки на DINрейку типа TH35-7,5 (35 мм x 7,5 мм) или на плоскую панель.

Внимание! Установка модуля на рейку типа ТН35-15 (35 мм х 15 мм) не допускается!

Модуль имеет степень защиты корпуса по ГОСТ 14254-2015 не менее - IP20.

Модуль имеет разъемную конструкцию, позволяющую отделять основной корпус от основания модуля для доступа к платам. Соединение корпуса с основанием выполнено с помощью защелок.

Подключение полевых цепей к модулю осуществляется с помощью съемных клеммников с винтовыми зажимами.

Модуль имеет встроенную шину расширения для подключения цепей питания и интерфейсных линий, установленную в основание.

На верхней панели модуля расположены поворотные переключатели задания адреса и элементы индикации.

Масса модуля составляет - 147 г.

Среднее время наработки между отказами модулей составляет не менее 120000 часов.

Обозначение модуля при заказе – Модуль аналогового вывода АО-4 ГЖИК.421243.006.

1.2.2 Основные технические характеристики

Основные технические характеристики модуля приведены в таблице 1.

Таблица 1 – Основные технические характеристики модуля АО-2

Характеристика	Значение	Примечание
Количество аналоговых выходов	4	
Диапазон задания выходных сигналов	420 мА 05В	
Сопротивление нагрузки для диапазона 420 мА, Ом, не более	600	
Сопротивление нагрузки для диапазона 05 В, кОм, не менее	1,0	
Предел приведенной погрешности задания напряжения и тока	≤ ±0,1%	Во всем диапазоне рабочих условий
Разрядность ЦАП, бит	12	
Время установки полного диапазона изменения сигнала, не более, мкс	25	
Интерфейс обмена данными	RS-485	
Скорость обмена данными	1 Мбит/с, 115200 бит/с, 38400 бит/с, 19200 бит/с, 9600 бит/с, 4800 бит/с, 2400 бит/с, 1200 бит/с	
Протокол обмена	Modbus RTU	
Диапазон задаваемых адресов	164	
Поддержка «горячей замены»	да	
Сохранение настроек в энергонезависимой памяти	да	EEPROM
Напряжение питания, В	20,428,8	
Потребляемый ток, мА, не более	60	Без учета питания выходных каналов

Аналоговые выходы с токовым выходным сигналом защищены от размыкания цепи нагрузки.

Аналоговые выходы с выходом по напряжению защищены от короткого замыкания цепи нагрузки.

Аналоговые выходы работают от внешнего источника питания с номинальным напряжением (24 ± 5) В

Аналоговые выходы имеют гальваническую изоляцию, электрическая прочность изоляции - не менее 500 В.

Аналоговые выходы имеют возможность калибровки при производстве и эксплуатации, калибровочные коэффициенты сохраняются в энергонезависимой памяти.

Настройка диапазонов выходных аналоговых сигналов производится индивидуально для каждого канала с помощью ПО ПЛК или специальной утилиты.

1.2.3 Характеристики интерфейса передачи данных

Модуль содержит шину расширения ПЛК.

Интерфейс вывода/вывода шины расширения основан на интерфейсе RS-485 со следующими характеристиками:

- режим передачи полудуплексный;
- скорости передачи 1 Мбит/с115200 бит/с, 38400 бит/с, 19200 бит/с, 9600 бит/с, 4800 бит/с, 2400 бит/с, 1200 бит/с;
- настройка скорости перемычками;
- параметры передачи данных 8-N-1;
- подключение согласующего резистора перемычкой;
- протокол обмена Modbus RTU.

Описание Modbus регистров модуля приведено в приложении А.

1.2.4 Характеристики электропитания

Модуль питается от источника постоянного тока с номинальным выходным напряжением Ue=24 B, с допустимыми отклонениями от минус 15% до плюс 20% (20,4 B...28,8 B).

Потребляемый ток модуля при номинальном напряжении питания не более 60 мА.

Модуль выдерживает прерывание питания на время не более 10 мс без нарушения функционирования.

1.2.5 Условия эксплуатации

Модуль пригоден для эксплуатации в температурном диапазоне минус 40°С...плюс 55°С, и относительной влажности от 10% до 95% без образования конденсата.

Модуль пригоден для эксплуатации на высоте до 2000 м над уровнем моря.

Модуль, согласно ГОСТ IEC 61131-2-2012, выдерживает в процессе эксплуатации синусоидальную вибрацию в соответствии с требованиями, указанными в таблице 2.

Таблица 2 - Устойчивость к синусоидальной вибрации

Частотный диапазон, Гц	Непрерывная вибрация	Случайная вибрация
	Смещение 1,75 мм	Смещение 3,5 мм
$5 \le f < 8,4$	постоянная	постоянная амплитуда
	амплитуда	
	Ускорение 0,5 g	Ускорение 1,0 g
$8,4 \le f \le 150$	постоянная	постоянная амплитуда
	амплитуда	

Модуль выдерживает в процессе эксплуатации полусинусоидальные удары амплитудой 15 q, длительностью 11 мс в каждой из трех взаимно перпендикулярных осей.

1.2.6 Характеристики ЭМС

Модуль, в соответствии с ГОСТ IEC 61000-6-4-2016, имеет предельные значения эмиссии в оговоренных частотных диапазонах, не более указанных в таблице 3.

Таблица 3 - Предельные значения эмиссии

		Уровень жесткости	Уровень жесткости
Порт	Частотный	нормативный.	дополнительный.
11001	диапазон	(Расстояние измерения	(Расстояние измерения
		– 10 м)	– 30 м)
Порт корпуса	30-230 МГц	40 дБ (мкВ/м)	30 дБ (мкВ/м)
	50 250 М ц	квазипиковое значение	квазипиковое значение
(помехи от излучения 23	230-1000 МГц	47 дБ (мкВ/м)	37 дБ (мкВ/м)
VISTIY ICIIVITI	230 1000 MI L	квазипиковое значение	квазипиковое значение

Модуль, согласно ГОСТ 30804.4.2-2013, устойчив к электростатическим разрядам в соответствии с требованиями, указанными в таблице 4.

Таблица 4 - Устойчивость к электростатическим разрядам

Порты п	риложени	Я	Испытания	Уровень	Уровень
1.0015	printoncenni	•	richisi annin	испытаний	испытаний
Корпус,	порты	С	Контактный разряд	±4 κB	
соедините	лями				В
			Воздушный разряд	±4 κB	

Модуль, согласно ГОСТ 30804.4.3-2013, устойчив к радиочастотному электромагнитному полю в соответствии с требованиями, указанными в таблице 5.

Таблица 5 - Устойчивость к электромагнитному полю

Вид излучения	Диапазон	Уровень испытаний	Критерий оценки
	частот	испытании	результатов
Амплитудная	2,0 - 2,7 ГГц	1 В/м	
модуляция 80% 1кГц синусоидальной	1,4 - 2,0 ГГц	3 В/м	Α
формы	80 - 1000 МГц	10 В/м	

Модуль, согласно ГОСТ Р 51317.4.6-99, устойчив к кондуктивным радиочастотным помехам в соответствии с требованиями, указанными в таблице 6.

Таблица 6 - Устойчивость к кондуктивным радиочастотным помехам

Вид излучения	Диапазон частот	Уровень испытаний	Критерий оценки результатов
Амплитудная модуляция 80% 1кГц синусоидальной формы	150 кГц - 80 МГц	3 B	Α

Модуль, согласно ГОСТ 30804.4.4-2013, устойчив к наносекундным импульсным помехам в соответствии с требованиями, указанными в таблице 7.

Таблица 7 - Устойчивость к наносекундным импульсным помехам

Порты приложения	Уровень испытаний	Критерий оценки результатов
Порты аналоговых входов	0,5 кВ	В

1.3 Состав изделия

Комплект поставки модуля приведен в таблице 8.

Таблица 8 - Комплект поставки

Наименование	Обозначение	Количество
Модуль аналогового вывода АО-4	ГЖИК.421243.006	1
Паспорт	ГЖИК.421243.006 ПС	1

1.4 Устройство и работа изделия

1.4.1 Органы управления и индикации

Описание состояния индикаторов модуля представлено в таблице 9.

Таблица 9 - Состояние индикаторов модуля

Индикатор/цвет	Назначение	Режимы работы
«ПИТ» /красицій	Состояние цепей	Светится при работе внутренних
«ПИТ»/красный	питания	источников питания модуля

Индикатор/цвет	Назначение	Режимы работы
«ОБМЕН»/зеленый	Состояние обмена по шине расширения	Мигает при обмене данными по шине расширения
«РАБОТА»/желтый	Состояние управляющей программы	Мигает при штатной работе модуля Горит постоянно при ошибке записи/чтения в EEPROM или ошибке обмена с ЦАП по интерфейсу SPI

На лицевой панели модуля расположены поворотные переключатели для установки адреса:

- переключатель «x1» устанавливает количество единиц в адресе модуля;
- переключатель «x10» устанавливает количество десятков в адресе модуля, положения 7,8,9 переключателя являются некорректными.

Опрос переключателей производится только в момент подачи питания на модуль, изменение положения переключателей в процессе работы не меняет его адрес.

Модуль содержит перемычки, которые должны быть установлены в соответствии с применением. Для того чтобы изменить положение перемычек необходимо отделить основной корпус модуля от основания, поставить перемычки в требуемое положение и собрать модуль в обратном порядке. Модуль содержит две пользовательские перемычки, показанные на рисунке 2. Перемычка XP2 предназначена для подключения согласующего резистора (терминатора) в интерфейсные линии RS-485 шины расширения. Подключение согласующего резистора необходимо при установке модуля последним относительно ведущего модуля. Перемычка XP3 предназначена для задания скорости обмена по шине.

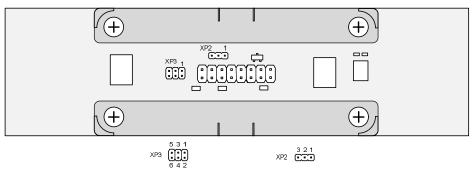


Рисунок 2 - Расположение перемычек XP2 и XP3

Режимы работы в зависимости от места установки перемычек показаны в таблице 10. Таблица 10 – Установка перемычек XP2 и XP3

Перемычка	Расположение перемычки	Режим
XP2	1-2	Терминатор отключен
XP2	2-3	Терминатор подключен
	1-2, 3-4,5-6	1200 бит/с
	1-2, 3-4	2400 бит/с
	1-2, 5-6	4800 бит/с
XP3	1-2	9600 бит/с
APS	3-4,5-6	19200 бит/с
	3-4	38400 бит/с
	5-6	115200 бит/с
	-	1 Мбит/с

1.4.2 Назначение контактов разъемов модуля

Назначение контактов разъема модуля приведено в таблице 11.

Таблица 11 - Назначение контактов разъемов

Контакт	Тип	Назначение	Примечание
U+	Вход	Питание аналоговой части - плюс	
U-	Вход	Питание аналоговой части - минус	
AGND	Выход	Общий аналоговый минус	Объединены в модуле с U-
U1U4	Выход	Выходы напряжения	
I1I4	Выход	Выходы тока	

1.5 Маркировка и пломбирование

- 1.5.1 Маркировка модуля выполняется в соответствии с ГОСТ 18620-86 и содержит следующие надписи:
 - наименование модуля;
 - условное обозначение модуля;
 - дата изготовления (месяц, год);
 - порядковый номер модуля по системе нумерации предприятия-изготовителя;
 - товарный знак предприятия-изготовителя;
 - надпись «Сделано в России»;
 - единый знак обращения продукции на рынке ЕАЭС.
- 1.5.2 Пломбирование модуля проводится предприятием-изготовителем при производстве или обслуживающей организацией при эксплуатации.

Пломбирование осуществляют на стыке лицевой панели с основанием корпуса наклеиванием гарантийной этикетки с логотипом предприятия-изготовителя или обслуживающей организацией.

1.6 Упаковка

Модуль упаковывается в специально изготовленную картонную коробку.

Упаковка защищает модуль от повреждений во время транспортировки.

Упаковка для хранения и транспортирования соответствует условиям транспортирования «С» по ГОСТ 23170-78.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

Модуль должен эксплуатироваться в условиях, оговоренных в п.1.2.

2.2 Подготовка изделия к использованию

2.2.1 Распаковывание

Перед распаковыванием модуля после хранения его при температуре окружающего воздуха ниже 0°С необходимо выдержать его в упаковке не менее 8 часов в помещении с положительной температурой воздуха.

Вскрыть упаковку и произвести осмотр модуля на отсутствие повреждений корпуса.

Проверить комплектность и серийный номер модуля на соответствие с данными в паспорте изделия.

2.2.2 Установка и подключение

Перед подключением модуля необходимо установить поворотными переключателями адрес в диапазоне 1...64.

Проверить правильность установок перемычек XP2 и XP3 в соответствии с применением.

Установить модуль на DIN-рейку. Рейка должна быть подключена к защитному заземлению отдельным проводником. Установку нескольких модулей в одну линейку необходимо выполнять последовательно для правильного соединения шины расширения и исключения ее повреждения.

Количество модулей, которое можно установить в одну линейку - не более 10.

Подключить к модулю цепи аналоговых выходов в соответствии с маркировкой на корпусе и как показано на рисунке 3.

В случае неблагоприятной электромагнитной обстановки рекомендуется применять отдельный источник для аналоговых выходов с подключением его минуса на защитную землю через резистор 1 МОм.

Выводы U- и AGND аналоговых выходов объединены в модуле, что требуется учитывать при подключении нагрузок.

Для подключения полевых цепей рекомендуется использовать экранированные кабели с заземлением экрана на входе в шкаф ПЛК.

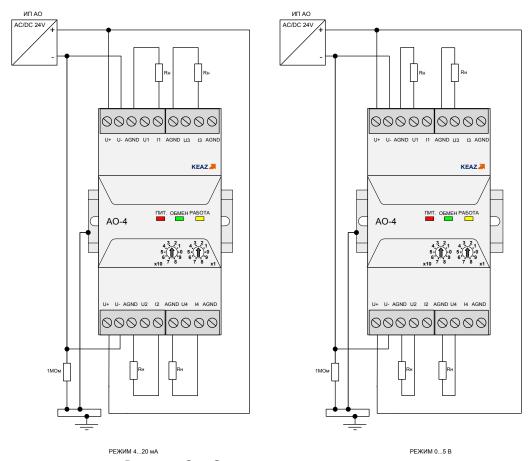


Рисунок 3 - Схемы подключения модуля

2.3 Использование изделия

2.3.1 Замена модуля

Модуль поддерживает режим «горячей замены», что позволяет производить замену неисправного изделия, установленного в линейке ПЛК, без отключения всей линейки. Перед заменой необходимо отсоединить клеммные колодки с проводами, фиксаторы модуля на DIN-рейке не выдвигать! Затем отсоединить верхнюю часть модуля от основания, потянув его перпендикулярно к плоскости рейки и преодолевая сопротивление защелок. Основание модуля при этом должно остаться не рейке. Установку модуля производить в обратном порядке, соблюдая его ориентацию.

При замене модуля нужно иметь ввиду, что режимы модуля, записанные во внутреннюю EEPROM, могут не совпадать с требуемыми.

При замене модуля в сборе с основанием необходимо отключить питание всей линейки модулей, отсоединить клеммные колодки с проводами, выдвинуть фиксаторы модуля на DIN-рейке и раздвинуть соседние модули для отключения от них шины расширения.

З ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Модуль не требует обслуживания в процессе эксплуатации.

3.1 Техническое освидетельствование

Поверка аналоговых измерительных каналов проводится один раз в два года в соответствии с «Методикой поверки измерительных каналов OptiLogic L».

3.2 Порядок и периодичность калибровки

Периодическая калибровка каналов модуля проводится персоналом службы КИП. Периодичность проведения калибровки – не реже одного раза в два года.

Калибровка каналов модуля проводится с помощью программы «Настройка модулей OptiLogic L», калибровочные коэффициенты по каждому диапазону измерений записываются в EEPROM модуля.

4 ТЕКУЩИЙ РЕМОНТ

Ремонт модуля выполняется только предприятием-изготовителем изделия.

5 ХРАНЕНИЕ

- 5.1~B транспортной таре модули могут храниться в неотапливаемых складских помещениях при температуре окружающего воздуха от минус 50° C до плюс 50° C и относительной влажности до 95~% при температуре плюс35~%C.
- 5.2 Модули должны храниться в упаковке в закрытых отапливаемых складских помещениях при температуре от плюс 5° C до плюс 40° C и относительной влажности до 80% при температуре плюс 20° C.
- 5.3 В помещении не должно быть пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию изделий.

6 ТРАНСПОРТИРОВАНИЕ

Модули в упаковке предприятия-изготовителя могут транспортироваться любым видом транспорта в крытых транспортных средствах (в железнодорожных вагонах, закрытых автомашинах, герметизированных отапливаемых отсеках самолетов и т.д.) в соответствии с правилами транспортирования грузов на соответствующем виде транспорта, на любые расстояния при температуре окружающего воздуха от минус 50° С до плюс 50° С и относительной влажности до 98° % при температуре плюс 35° С.

7 УТИЛИЗАЦИЯ

Изделие не содержит в своём составе опасных или ядовитых веществ, способных нанести вред здоровью человека или окружающей среде и не представляет опасности для жизни, здоровья людей и окружающей среды по окончании срока службы. В этой связи утилизация изделия может производиться по правилам утилизации общепромышленных отходов. Утилизация осуществляется отдельно по группам материалов: пластмассовым элементам, металлическим крепежным деталям. Модуль не содержит драгоценных металлов в компонентах изделия.

Утилизацию модуля проводить согласно соответствующим законам и правовым документам, действующим на территории конкретного субъекта Российской Федерации.

Приложение А Карта регистров Modbus модуля AO-4

Регистр	Назначение	Доступ	Описание
0	Тип модуля	Чтение	Тип модуля. Возможные значения: - 12 – Модуль аналогового вывода АО-4.
1	Статус работы модуля	Чтение	Статуса работы модуля: - Бит 0 – работа Бит 1 – нет микропрограммы Бит 2 – резерв Бит 3 – аппаратный сбой ЦАП Бит 4 – сбой чтения/записи ЕЕРROM.
2	Режим настройки модуля	Чтение Запись	Перевод модуля в режим настройки. Допустимые значения: - 0 – Отключить режим настройки. - 1 – Изменение режима работы каналов. - 2 – Изменение параметров каналов. По истечению 5 минут с момента последнего изменения режима работы или параметра выхода режим настройки будет автоматически отключен.
4	Режим работы выхода AO1	Чтение Запись	Установка режима работы выхода АО1. Допустимые значения: - 301 – Аналоговый выход 420 мА. - 302 – Аналоговый выход 05 В. Значение по умолчанию: 301. Значение регистра сохраняется в ЕЕРКОМ и восстанавливается при включении питания модуля. Перед изменением режима работы выхода необходимо перевести модуль в режим настройки «1» или «2» (см. регистр 2).
5	Режим работы выхода AO2	Чтение Запись	Аналогично регистру 4.
6	Режим работы выхода АОЗ	Чтение Запись	Аналогично регистру 4.
7	Режим работы выхода АО4	Чтение Запись	Аналогично регистру 4.
8	Значение выхода AO1	Чтение Запись	Установка значения аналогового выхода АО1 в отсчетах ЦАП в диапазоне от 0 до 65535. Допустимые значения: - 065535, в режиме 420 мА 065535, в режиме 05 В.
9	Значение выхода AO2	Чтение Запись	Аналогично регистру 8.
10	Значение выхода АОЗ	Чтение Запись	Аналогично регистру 8.
11	Значение выхода AO4	Чтение Запись	Аналогично регистру 8.

Регистр	Назначение	Доступ	Описание
12,13	Значение выхода AO1 в физических единицах, формат FLOAT	Чтение Запись	Установка значения выхода АО1 в физических единицах в соответствии с режимом работы выхода (регистр 4) в формате FLOAT IEEE 754. Допустимые значения: - 420, в режиме 420 мА. - 05, в режиме 05 В. Значение менее допустимого отключает канал в обоих режимах. Значение более допустимого установит максимально-допустимое значение на выходе.
14,15	Значение выхода AO2 в физических единицах, формат FLOAT	Чтение Запись	Аналогично регистрам 12,13.
16,17	Значение выхода АОЗ в физических единицах, формат FLOAT	Чтение Запись	Аналогично регистрам 12,13.
18,19	Значение выхода AO4 в физических единицах, формат FLOAT	Чтение Запись	Аналогично регистрам 12,13.